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Diffusion-limited aggregation: A relationship between surface thermodynamics
and crystal morphology

Vladislav A. Bogoyavlenskiy* and Natasha A. Chernova
Low Temperature Physics Department, Moscow State University, Moscow 119899, Russia

~Received 23 June 1999!

We have combined the original diffusion-limited aggregation model introduced by Witten and Sander with
the surface thermodynamics of the growing solid aggregate. The theory is based on the consideration of the
surface chemical potential as a thermodynamic function of the temperature and nearest-neighbor configuration.
The Monte Carlo simulations on a two-dimensional square lattice produce the broad range of shapes such as
fractal dendritic structures, densely branching patterns, and compact aggregates. The morphology diagram
illustrating the relationship between the model parameters and cluster geometry is presented and discussed.

PACS number~s!: 81.10.Aj, 02.70.Lq, 68.70.1w, 82.65.Dp
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I. INTRODUCTION

Diffusion-limited growth processes occur in a broad ran
of interesting systems ranging from physics to chemis
material science, and biology@1–6#. The common features
that we observe in these systems are the formation of c
plex interfacial structures that vary from compact to frac
@7,8#. The growth processes are described by nonlin
partial-differential equations and both the analytical and
numerical treatments of these equations are extremely d
cult even on current computers@9,10#. As a result, many of
the questions concerning structure formation and transit
between different growth morphologies have not so far b
satisfactorily answered. Much effort has especially been
voted to establishing the relationship between cluster m
phology and the growth mechanism.

The diffusion-limited aggregation~DLA ! model intro-
duced by Witten and Sander in 1981@11# has attracted much
attention because of the variety of growth shapes that it
produce @12,13#. The standard DLA model simulates th
growth of an aggregate by considering the random walk o
particle on a lattice containing a seed. If the mobile parti
encounters the seed, it ceases to move. As successive
ers repeat this process, the fractal aggregates are prod
In order to study more realistic DLA-processes, vario
kinds of aggregation models have been introduced. The m
known of them consider sticking probability kinetics@14–
18#, surface diffusion@19–22,27#, and many-particle interac
tions @23–27#.

In this work, the modified DLA model based on surfa
thermodynamics of solid aggregate growing from vap
phase is investigated. The theory considers the sur
chemical potential as a thermodynamic function of tempe
ture and nearest-neighbor configuration. Monte Carlo~MC!
simulations on a two-dimensional~2D! square lattice pro-
duce the variety of growth patterns such as fractal dend
structures, densely branching patterns, and compact ag
gates, i.e., three main morphological types observed in c
tal growth. The paper is organized as follows. In Sec. II

*Electronic address: bogoyavlenskiy@usa.net
PRE 611063-651X/2000/61~2!/1629~5!/$15.00
e
,

-
l
ar
e
fi-

s
n

e-
r-

n

a
e
lk-
ed.
s
st

r
ce
-

ic
re-
s-
e

general model of surface thermodynamics and mass tran
is formulated. The subject of Sec. III is numerical procedu
and results of MC simulations. Finally, in Sec. IV we discu
the observed growth patterns in terms of a proposed morp
logical diagram.

II. GENERAL MODEL

Let us assume that the motion and aggregation of
growth units take place on a square 2D grid, and restrict
study to a physical system with the following properties.~i!
The nutrient vapor phase consists of two components:
growth species and an inert gas which randomizes the
tion of the growth units.~ii ! The growth unit is transported
towards the surface of the solid aggregate only by diffusi
there is no convective motion of the nutrient.~iii ! The heat
transfer realizes through the solid phase from the surfac
the cool origin.~iv! The probabilitypgrowth that the growth
unit sticks onto a vacant surface position is given by
thermodynamic condition

pgrowth51 if Dm,0, ~1!

pgrowth50 if Dm>0, ~2!

where Dm[msolid2mvapor is the chemical potential differ-
ence between solid and vapor states.

The thermodynamics of the aggregation is considered
be the following:~i! the vapor chemical potentialmvapor is
constant and~ii ! the chemical potential of the solid phase
the thermodynamic function of the temperatureT and local
surface configurationS,

Dm~T,S!5
L

TA
~T2TA!1S. ~3!

Here L5const is the latent heat andTA is the equilibrium
temperature of the aggregation. Assuming only near
neighbor interactions on the square lattice, the linear form
the local surface configurationS can be represented as

S~n!5
L

TA
~22n!Tsurf, ~4!
1629 ©2000 The American Physical Society
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wheren is the number of occupied nearest neighbors of
vacant surface position andTsurf5const is the configuration
increment. The physics of the relations~3! and ~4! becomes
clear if we rewrite the equilibrium condition of the aggreg
tion Dm50 as

Tn5TA1~n22!Tsurf. ~5!

HereTn , n51•••3 are the equilibrium temperatures of th
aggregation onto one-, two-, and three-neighboring confi
rations of the vacant surface position, respectively. The o
all picture of the surface thermodynamics is summarized
Fig. 1 which shows the aggregation of the growth units
the square lattice.

The surface aggregation releases the heat which diffu
to the cool origin. The heat transfer obeys the diffusion eq
tion and appropriate boundary condition

]T~r ,t !

]t
5D¹2T~r ,t !1

L

C

]NA~r ,t !

]t
, ~6!

T~0,t !5TO . ~7!

Herer5(x,y) is the coordinate vector,D5const is the ther-
mal diffusivity of the solid phase~we considerD50 in the
vapor phase!, C5const is the specific heat,NA(r ,t) is the
density of the aggregating units, andTO5const is the origin
temperature.

The set of Eqs.~3!–~7! completely describes the surfac
thermodynamics and the heat transfer. For MC simulatio
we define the additional parameters

l[
L

C~TA2TO!
, ~8!

j[
Tsurf

~TA2TO!
, ~9!

FIG. 1. Three equilibrium temperatures of aggregation co
sponding to three local configurations of vacant surface position
a square lattice.
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wherel andj are the dimensionless latent heat and surf
energy, respectively. To describe the mass transfer, le
assume that the number of growth units reaching the ag
gate surface per time unit~i.e., the intensity of the mas
transfer! Ngrowth is constant. Then we can introduce the d
mensionless diffusivity as

h[
D

a2Ngrowth

, ~10!

wherea is the parameter of the square lattice. It is clear t
diffusivity h establishes the ratio of the heat and mass tra
fer.

III. NUMERICAL SIMULATIONS

According to our assumption, the motion of growth un
is governed only by diffusion. The diffusive motion is de
scribed by a simple random walk with the isotropic jum
lengtha. This condition on the square lattice is given by t
formula

Pk11~x,y!5
1

4
$Pk~x1a,y!1Pk~x2a,y!1Pk~x,y1a!

1Pk~x,y2a!%, ~11!

wherePk(x,y) is the probability that a growth unit can b
found at location (x,y) after k steps of its motion.

The problem is consistent with the following MC simula
tion on the 200a3200a square lattice. Initially, a nucleus i
located at the origin. A random walker is released from
circular source outside the central cluster. The source lo
tion is considered to beRG15a whereRG is the radius of
gyration of the growing cluster. This restriction of rando
walks saves considerable computer time@28# so this simpli-
fication is used. The random walk is pursued until the wal
encounters a vacant site on the aggregate surface. After
the nearest-neighboring configuration and the temperatur
the site are checked. According to Eqs.~3!, ~4!, the value of
Dm is calculated. IfDm,0, a registration of the site is
made. In the opposite case (Dm>0) that walker is disre-
garded. When a site has been registered 200 times, it is
sidered to be occupied. This number of registrations has
effect of reducing the noise inherent in simulations of th
kind @29–31#. When the walker aggregates onto the surfa
site, its temperature is initially considered to beTA1L/C,
and then decreases according to the heat transfer equa
~6!,~7!. The simulation is continued until the aggrega
reaches a specified size (RG5100a).

The results of MC simulations are presented in Figs
and 3. Figure 2 shows the morphological evolution of t
growing aggregate caused by the variation of the diffusiv
h ~the parametersl andj are considered to be constant!. At
low values ofh the compact structure is observed@Fig. 2~a!#.
The compact growth is characterized by epitaxial aggre
tion of the growth units so the shape is square. The incre
of h results in the morphological transition from compact
densely branching morphology~DBM!. The DBM phase lo-
cally resembles the ramified structure of a DLA fractal but
larger length scale it is densely packed and the pattern h

-
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well defined smooth envelope. At the beginning of the tra
sition the pattern looks similar to a square cracked along
symmetry axis@Fig. 2~b!#. Then the DBM aggregate be
comes more isotropic@Figs. 2~c! and 2~d!#. When the value
of h exceeds the second critical point the DBM structu
transforms to the fractal@Figs. 2~e! and 2~f!#. This transition
is connected to the change of the envelope shape from
vex to concave. The aggregate becomes tip-stable dend
with the fourfold symmetry@Fig. 2~f!#. This structure is quite
similar to one obtained by the standard noise-reduced D
algorithm @13,18,30#. The possible morphologies at th
variation of the surface energyj are summarized by Fig. 3
The fractal structures grow at low values ofj @Figs. 3~a! and
3~b!#. The increase ofj leads to the successive transitio
fractal-DBM @Figs. 3~c! and 3~d!# and DBM-compact@Figs.
3~e! and 3~f!#.

FIG. 2. Morphology of growing aggregate as a function of d
fusivity h. These are results forl50.3 andj50.3; values ofh are
0.02 ~a!, 0.04 ~b!, 0.1 ~c!, 0.4 ~d!, 1.0 ~e!, and 4.0~f!.

FIG. 3. Morphology of growing aggregate as a function of s
face energyj. These are results forl50.3 andh52.0; values ofj
are 0.1~a!, 0.3 ~b!, 0.4 ~c!, 0.6 ~d!, 0.8 ~e!, and 0.9~f!.
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IV. DISCUSSION

The numerical simulations presented in the previous s
tion demonstrate the broad range of the growth patterns.
have obtained three possible morphologies: compact, DB
and fractal. The observed morphological transitions~fractal-
DBM and DBM-compact! can be described by a morpholog
diagram in coordinates (j,l,h) where the phase fields o
this diagram are defined as

h$fractal↔DBM%[h1~j,l!, ~12!

h$DBM↔compact%[h2~j,l!. ~13!

A. Fractal-DBM transition

To determine the functionh1(j,l), let us find the solu-
tion of the heat transfer equation~6! in the case of the fracta
dendritic growth. Because of high values of the parameteh,
we can assume the quasistationary limit]T/]t→0 in the
solid phase. The growth units aggregating onto the surf
sites give only a slight temperature perturbation wh
quickly slows down. As a consequence, the temperature fi
in the solid phase can be written as

T~x!5TO1~Tl2TO!
uxu
l

, ~14!

where l @a is the distance between a growth edge and
origin and Tl<TA2Tsurf is the temperature of the growt
edge~the inequality is a representation of a free aggregat
condition onto all vacant surface positions; it is a necess
condition of the fractal growth!. As a result, the cooling ve
locity of an aggregating growth unit]Tunit /]t follows from
the equation

]Tunit

]t
5

D

a2
~Tl2TO!5const. ~15!

The initial temperature of the growth unit isTA1L/C, the
final temperature equals to the cool origin temperatureTO .
So the time of this coolingDtC is given by the relation

DtC5
a2~TA1L/C2TO!

D~Tl2TO!
. ~16!

Assuming the growth edge temperature is equal to the e
librium of one corresponding to the aggregation of on
neighboring vacant position~i.e., Tl5T15TA2Tsurf), and
then substituting Eq.~16! into Eq. ~10!, we obtain the fol-
lowing formula for the fractal-DBM transition:

h1~j,l!5
TA1L/C2TO

TA2Tsurf2TO
5

11l

12j
. ~17!

To illustrate the validity of our assumption~14!, we in-
vestigated the real temperature fields during MC simulati
The numerical results of temperature fields in a fractal d
dritic cluster are presented in Fig. 4. The figure shows t
Eq. ~14! is acceptable quite in all range of coordinatex, and
only close to the growth edges the linear dependence tr
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forms to a nonlinear one. The temperature perturbati
caused by aggregating units are negligible.

B. Compact-DBM transition

The case of the compact-DBM transition is more comp
cated than the previous one because of nonlinear temper
oscillations on the surface. The overall picture of the co
pact growth@Fig. 2~a!# is summarized by Fig. 5 which show
the temperature fields in the solid phase at various gro
stages. To show the temperature sequence of the pattern
subdivided the solid phase into two fields: ‘‘cool’’~light-
gray color! and ‘‘hot’’ ~dark-gray color!. The temperature

FIG. 4. Temperature fields in growing fractal dendritic agg
gate before~a! and shortly after aggregation of growth units~b!.

FIG. 5. Temperature fields in growing compact aggregate
different growth stages: before nucleation~a!, nucleation~b!, ~c!,
epitaxial growth ~d!, ~f!. Sites with temperaturesT,T1 and T
.T1 are colored in light-gray and dark-gray, respectively. Arro
mark nucleation of monoparticle layer.
s
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which differentiates the fields corresponds to the equilibri
of one for the aggregation onto one-neighboring vacant
sition:

T15TA2Tsurf. ~18!

One can see that only ‘‘cool’’ surface sites are respons
for nucleation of new monoparticle layer. To illustrate th
let us discuss the main growth stages in details. Before
nucleation of a new monoparticle layer, the ‘‘cool’’ site
appear at the center of each crystal side@Fig. 5~a!#. Shortly
after the nucleation the ‘‘cool’’ surface sites transform
‘‘hot’’ ones due to the latent heat of the aggregation@Figs.
5~b! and 5~c!#. Then the monoparticle layer begin to gro
from the center of the crystal side to the edge, and
‘‘cool’’ temperature field decreases moving to the cool o
gin @Figs. 5~d! and 5~e!#. When the growth front approache
the crystal side edge, the ‘‘cool’’ temperature field begins
back motion to the surface@Fig. 5~f!#. This is the full cycle
of the epitaxial compact growth.

For this cycle growth process, the quasistationary lim
]T/]t→0 and Eq.~14! are unacceptable. Therefore, it
hardly possible to obtain an analytic criterion for th
compact-DBM transition. To find a solution, we applied t
method of the dimension analysis to this problem. We c
sidered the following approximation for functionh2(j,l):

h2~j,l!;ja~12j!b~11l!g, ~19!

wherea, b, and g are unknown parameters that obey t
condition a1b1g50. The values of parametersa5g
5 1

2 , b521 were determined from MC simulations. As
result, we obtained the following formula:

h2~j,l!;
A~TA1L/C2TO!Tsurf

TA2Tsurf2TO
;

Aj~11l!

12j
. ~20!

C. Morphological diagram

Equations~17!, ~20! give the complete information abou
the morphology of the growing aggregate. In general c

FIG. 6. Morphology diagram in coordinates (j, logh) obtained
for l50.3. Dotted lines correspond to sectionsj50.3 andh52.0.-

t
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the morphological type is a function of three variables:j, l,
and h. However, in most cases the parameterl,1 so its
functional dependence in Eqs.~17!, ~20! is rather weak in
comparison to the dependence of the parameterj which is
crucial for the pattern type. Thus, it is quite acceptable
illustrate the morphology diagram in two coordinates:j and
h. The 2D restriction (l5const) of the diagram is presente
in Fig. 6. The figure shows the three kinds of numerica
obtained growth patterns. The fractal structures are obse
re

Le

,

v.
o

ed

at h.h1(j,l), the compact growth occurs ath,h2(j,l),
and the intermediate caseh2(j,l),h,h1(j,l) corre-
sponds to the DBM patterns. The diagram sectionsj
5const andh5const) demonstrate the observed morph
logical evolutions@Figs. 2 and 3#.
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