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Diffusion-limited aggregation: A relationship between surface thermodynamics
and crystal morphology

Vladislav A. Bogoyavlenski{y and Natasha A. Chernova
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We have combined the original diffusion-limited aggregation model introduced by Witten and Sander with
the surface thermodynamics of the growing solid aggregate. The theory is based on the consideration of the
surface chemical potential as a thermodynamic function of the temperature and nearest-neighbor configuration.
The Monte Carlo simulations on a two-dimensional square lattice produce the broad range of shapes such as
fractal dendritic structures, densely branching patterns, and compact aggregates. The morphology diagram
illustrating the relationship between the model parameters and cluster geometry is presented and discussed.

PACS numbgs): 81.10.Aj, 02.70.Lq, 68.76:w, 82.65.Dp

[. INTRODUCTION general model of surface thermodynamics and mass transfer
is formulated. The subject of Sec. Il is numerical procedure
Diffusion-limited growth processes occur in a broad rangeand results of MC simulations. Finally, in Sec. IV we discuss
of interesting systems ranging from physics to chemistrythe observed growth patterns in terms of a proposed morpho-
material science, and biolodyl—6]. The common features logical diagram.
that we observe in these systems are the formation of com-
plex interfacial structures that vary from compact to fractal Il. GENERAL MODEL
[7’8].' The groy\rth processes are described b_y nonlinear Let us assume that the motion and aggregation of the
partial-differential equations and both the analytical and th

ical £ th . v diff rowth units take place on a square 2D grid, and restrict our
numerical treatments of these equations are extremely di Study to a physical system with the following propertiés.

cult even on current computef8,10]. As a result, many of e hytrient vapor phase consists of two components: the
the questions concerning structure formation and transmonérowth species and an inert gas which randomizes the mo-
between different growth morphologies have not so far beeon of the growth units(ii) The growth unit is transported
satisfactorily answered. Much effort has especially been degwards the surface of the solid aggregate only by diffusion;
voted to establishing the relationship between cluster morthere is no convective motion of the nutriefiti) The heat
phology and the growth mechanism. transfer realizes through the solid phase from the surface to
The diffusion-limited aggregatioiDLA) model intro-  the cool origin.(iv) The probabilitypy.ewn that the growth
duced by Witten and Sander in 19B11] has attracted much unit sticks onto a vacant surface position is given by the
attention because of the variety of growth shapes that it cathermodynamic condition
produce[12,13. The standard DLA model simulates the

growth of an aggregate by considering the random walk of a Pgrowth=1 if Au<O, (€N
particle on a lattice containing a seed. If the mobile particle ]
encounters the seed, it ceases to move. As successive walk- Pgrowtn=0 if Au=0, )

ers repeat this process, the fractal aggregates are produce

In order to study more realistic DLA-processes, variou:swdhereA'“E'“So"d_.'“"a‘lJor is the chemical potential differ-
ce between solid and vapor states.

kinds of aggregation models have been introduced. The mogln_l_h th q ) fth tion i idered t

known of them consider sticking probability kinetif4— be th: foﬁcr)r\?viongyr(]i?r?r:%sv(;porec?}?agrlrr]?cgaall Egt;t?z;ns' ei;e 0
i i _ - i i - . vapor

18], surface diffusior19-22,21, and many-particle interac constant andii) the chemical potential of the solid phase is

tions[23-27. he th d ic function of th drend local
In this work, the modified DLA model based on surfacet e thermodynamic function of the temperatirand loca

thermodynamics of solid aggregate growing from vaporSurface configuratiod,

phase is investigated. The theory considers the surface L

chemical potential as a thermoo_lynam_ic function of tempera- Auw(T,2)==—(T-Ta)+2. 3
ture and nearest-neighbor configuration. Monte C&) Ta

simulations on a two-dimension&2D) square lattice pro- _ . . o
duce the variety of growth patterns such as fractal dendritié1€re L =const is the latent heat ant, is the equilibrium
temperature of the aggregation. Assuming only nearest-

structures, densely branching patterns, and compact aggre-

gates, i.e., three main morphological types observed in Crys‘r]eighbor interactions on the square lattice, the linear form of
tal growth. The paper is organized as follows. In Sec. Il thethe local surface configuratiah can be represented as

L
. . 2(n):-|-_(2_n)-|—surfi (4)
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where\ and ¢ are the dimensionless latent heat and surface
® T=T.+T.. energy, respectively. To describe the mass transfer, let us
; assume that the number of growth units reaching the aggre-
O gate surface per time unii.e., the intensity of the mass
transfej Ng.ouin IS CcOnstant. Then we can introduce the di-
mensionless diffusivity as

D
7=, (10
a Ngrowth

wherea is the parameter of the square lattice. It is clear that
diffusivity » establishes the ratio of the heat and mass trans-
fer.

IIl. NUMERICAL SIMULATIONS

According to our assumption, the motion of growth units
is governed only by diffusion. The diffusive motion is de-
scribed by a simple random walk with the isotropic jump

FIG. 1. Three equilibrium temperatures of aggregation correéqengtha. This condition on the square lattice is given by the
sponding to three local configurations of vacant surface position 0y mula

a square lattice.

1
wheren is the number of occupied nearest neighbors of the P, ,(x,y)= Z{Pk(x+ a,y)+P(x—a,y)+P(x,y+a)
vacant surface position antl,~ const is the configuration

increment. The physics of the relatio(® and(4) becomes +P(x,y—a)}, (12)
clear if we rewrite the equilibrium condition of the aggrega-
tion Ap=0 as where P (x,y) is the probability that a growth unit can be

found at location X,y) afterk steps of its motion.
The problem is consistent with the following MC simula-
tion on the 208X 200a square lattice. Initially, a nucleus is

HereTy, ,t.n=1~t- ‘3 are tt\f;ve equn(ljb:lhum tem.pﬁga“!res of tfhe located at the origin. A random walker is released from a
aggregation onto one-, two-, and three-neighboring conliguz; ;51 source outside the central cluster. The source loca-
rations of the vacant surface position, respectively. The over

all picture of the surface thermodynamics is summarized btion s considered to b& +5a whereRs is the radius of
Fig. 1 which shows the aggregation of the growth units o %yranon of the growing cluster. This restriction of random

the square lattice. Nwalks saves considerable computer tif28] so this simpli-

The surface aaaregation releases the heat which diffuséication is used. The random walk is pursued until the walker
ggreg counters a vacant site on the aggregate surface. After that

:9 the coclJoI ongin. Ihebheagtransferé)'?eys the diffusion €aU3ge nearest-neighboring configuration and the temperature of
lon and appropriate boundary condition the site are checked. According to E¢R), (4), the value of
Ap is calculated. IfAu<O0, a registration of the site is

Th=Ta+(N—=2)Tgys- 5

IaT(r,Y =DV2T(r,t)+ EM (6) made. In the opposite casd =0) that walker is disre-
at c a garded. When a site has been registered 200 times, it is con-
sidered to be occupied. This number of registrations has the
TOH)=To. (7)  effect of reducing the noise inherent in simulations of this

. . ) kind [29-31. When the walker aggregates onto the surface

Herer =(x,y) is the coordinate vectoR =const is the ther-  sijte, its temperature is initially considered to Bg+L/C,
mal diffusivity of the solid phasewe consideD=0 in the  and then decreases according to the heat transfer equations
vapor phasg C=const is the specific healNa(r,t) is the  (6) (7). The simulation is continued until the aggregate
density of the aggregating units, aiig=const is the origin  reaches a specified siz&{=100a).
temperature. The results of MC simulations are presented in Figs. 2

The set of Eqs(3)-(7) completely describes the surface and 3. Figure 2 shows the morphological evolution of the
thermodynamK:S and the heat transfer. For MC S|mu|at|0n%rowing aggregate caused by the variation of the d|ffus|v|ty

we define the additional parameters 7 (the parameters and¢ are considered to be constart
low values ofy the compact structure is obsenjfétg. 2(a)].

L The compact growth is characterized by epitaxial aggrega-

A= m, (8)  tion of the growth units so the shape is square. The increase

of # results in the morphological transition from compact to

T densely branching morpholodiPBM). The DBM phase lo-

—_ suf (9) cally resembles the ramified structure of a DLA fractal but at
(Ta—To)’ larger length scale it is densely packed and the pattern has a

3
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IV. DISCUSSION

The numerical simulations presented in the previous sec-
tion demonstrate the broad range of the growth patterns. We
have obtained three possible morphologies: compact, DBM,

(a) (b) and fractal. The observed morphological transiti¢inactal-

DBM and DBM-compadtcan be described by a morphology
diagram in coordinatesé(\,n) where the phase fields of
this diagram are defined as

n{fractak-DBM}=75,(&,\), (12

7{DBM« compact= 7,(&,\). (13

i A. Fractal-DBM transition

To determine the functiom,(&,\), let us find the solu-
tion of the heat transfer equati@8) in the case of the fractal
dendritic growth. Because of high values of the paramster

FIG. 2. Morphology of growing aggregate as a function of dif- we can assume the quasistationary limit/9t—0 in the
fusivity 7. These are results for=0.3 and¢=0.3; values ofp are  g5olid phase. The growth units aggregating onto the surface
0.02(a), 0.04(b), 0.1(c), 0.4(d), 1.0(e), and 4.0(f). sites give only a slight temperature perturbation which

_ o quickly slows down. As a consequence, the temperature field
well defined smooth envelope. At the beginning of the tran4n the solid phase can be written as

sition the pattern looks similar to a square cracked along its

symmetry axis[Fig. 2(b)]. Then the DBM aggregate be- ||

comes more isotropifFigs. 2c) and Zd)]. When the value T(X):TOJF(TI_TO)|_' (14)

of n exceeds the second critical point the DBM structure

transforms to the fractdFigs. 2e) and 2f)]. This transition  wherel>a is the distance between a growth edge and the
is connected to the change of the envelope shape from cogrigin and T)<T,— T, is the temperature of the growth
vex to concave. The aggregate becomes tip-stable dendritigige(the inequality is a representation of a free aggregation
with the fourfold symmetryFig. 2(f)]. This structure is quite  condition onto all vacant surface positions; it is a necessary
similar to one obtained by the standard noise-reduced DLAsondition of the fractal growth As a result, the cooling ve-

algorithm [13,18,3Q. The possible morphologies at the |ocity of an aggregating growth unitT /4t follows from
variation of the surface energyare summarized by Fig. 3. the equation

The fractal structures grow at low values®fFigs. 3a) and

(f)

3(b)]. The increase ot leads to the successive transitions dTym D
fractal-DBM [Figs. 3c) and 3d)] and DBM-compacfFigs. (;tl == —(T)=To)=const. (15)
3(e) and 3f)]. a

The initial temperature of the growth unit & +L/C, the

final temperature equals to the cool origin temperaitge
So the time of this cooling\t; is given by the relation
aX(Ta+L/C-T
Ate= (Ta o (16)
(a) (b)

D(T)—To)

Assuming the growth edge temperature is equal to the equi-
librium of one corresponding to the aggregation of one-
neighboring vacant positiofi.e., T|=T;=Tx— T¢,¢, and
then substituting Eq(16) into Eq. (10), we obtain the fol-

(c) (d)

lowing formula for the fractal-DBM transition:

Ta+L/IC—To 14\

AN)= = . 1
* ¢ ) Ta=Tsu—To 1-¢ 7
To illustrate the validity of our assumptiofi4), we in-
(e (f)

vestigated the real temperature fields during MC simulation.

The numerical results of temperature fields in a fractal den-
FIG. 3. Morphology of growing aggregate as a function of sur-dritic cluster are presented in Fig. 4. The figure shows that

face energyt. These are results for=0.3 andy=2.0; values o  EQ. (14) is acceptable quite in all range of coordinateand

are 0.1(a), 0.3 (b), 0.4 (c), 0.6 (d), 0.8 (e), and 0.9(f). only close to the growth edges the linear dependence trans-
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FIG. 4. Temperature fields in growing fractal dendritic agare- o, \ =0.3. Dotted lines correspond to sectighs 0.3 andy=2.0.

gate beforga) and shortly after aggregation of growth units.

which differentiates the fields corresponds to the equilibrium
forms to a nonlinear one. The temperature perturbationsf one for the aggregation onto one-neighboring vacant po-
caused by aggregating units are negligible. sition:

T1=Ta= Tsurt- (18
B. Compact-DBM transition . .
o ~ One can see that only “cool” surface sites are responsible
The case of the compact-DBM transition is more compli-for nycleation of new monoparticle layer. To illustrate this,

cated than the previous one because of nonlinear temperatugg ys discuss the main growth stages in details. Before the
oscillations on the surface. The overall picture of the com-ycleation of a new monoparticle layer, the “cool” sites

pact growth{Fig. 2@] is summarized by Fig. 5 which shows appear at the center of each crystal gifig. 5(a)]. Shortly

the temperature fields in the solid phase at various growthfter the nucleation the “cool” surface sites transform to
stages. To show the temperature sequence of the pattern, Wigot” ones due to the latent heat of the aggregat[&igs.
subdivided the solid phase into two fields: “coollight-  5() and 5c)]. Then the monoparticle layer begin to grow
gray coloy and “hot” (dark-gray coloy. The temperature from the center of the crystal side to the edge, and the
“cool” temperature field decreases moving to the cool ori-
gin [Figs. 5d) and Je)]. When the growth front approaches
the crystal side edge, the “cool” temperature field begins the

back motion to the surfadgrig. 5(f)]. This is the full cycle
. ~ of the epitaxial compact growth.
For this cycle growth process, the quasistationary limit
(a) (b) dTlgt—0 and Eq.(14) are unacceptable. Therefore, it is

hardly possible to obtain an analytic criterion for the
compact-DBM transition. To find a solution, we applied the

method of the dimension analysis to this problem. We con-
. . sidered the following approximation for functiog,(&,\):
~EX(1—§)B Y
© ) 72(&M) ~ E4(1=§P(1+N)7, (19

where «, B, andy are unknown parameters that obey the
condition a+ B+ y=0. The values of parameterg=y

=1, B=-—1 were determined from MC simulations. As a
result, we obtained the following formula:
) (f) V(TA+L/IC—To)Taur  VE(L+N)
72(6,N)~ = ~ (20)
TA Tsurf TO 1 g

FIG. 5. Temperature fields in growing compact aggregate at
different growth stages: before nucleati@, nucleation(b), (c),
epitaxial growth(d), (f). Sites with temperature¥<T,; and T
>T, are colored in light-gray and dark-gray, respectively. Arrows  Equations(17), (20) give the complete information about
mark nucleation of monoparticle layer. the morphology of the growing aggregate. In general case

C. Morphological diagram
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the morphological type is a function of three variablésh , at »>7n,(&,N), the compact growth occurs at<< 7,(&,\),
and . However, in most cases the parameterl so its and the intermediate cas@,(&,N)<n<n(&N) corre-
functional dependence in Eq€l7), (20) is rather weak in sponds to the DBM patterns. The diagram sectiods (
comparison to the dependence of the paramétetich is ~ =const and»=const) demonstrate the observed morpho-
crucial for the pattern type. Thus, it is quite acceptable tdogical evolutiongFigs. 2 and 3

illustrate the morphology diagram in two coordinatésand

7. The 2D restriction X = const) of the diagram is presented
in Fig. 6. The figure shows the three kinds of numerically ~We would like to thank Mr. George Olson for useful dis-
obtained growth patterns. The fractal structures are observerlissions and helpful comments.
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